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ABSTRACT 

A one-dimensional analytical model for axial deformation of continuous fiber 

reinforced metal-matrix composites under both thermal cycling and isothermal creep, with 

or without externally applied stresses, has been developed. Fibers in the model are 

considered to be non-creeping, thermo-elastic solids, whereas the matrix is considered to 

be thermo-elasto-plastic and creeping. The model accounts for the strain history of the 

composite, and allows for changing matrix creep mechanisms via the use of unified creep 

laws. The use of unified creep laws allows separation of the overall instantaneous creep 

strain rate into dislocation creep and diffusional creep components, which can be further 

separated into power law breakdown, pipe diffusion controlled power law, volume 

diffusion controlled power law, Coble and Nabarro-Herring creep. Additionally, the 

model allows for the incorporation of time-dependent interfacial sliding near the 

extremities of the fiber due to the existence of interfacial shear stresses. Based on a 

recent study, interfacial creep has been represented as being controlled by diffusional flow 

with a threshold stress (Bingham flow). The interfacial creep law allows simulation of 

non-isostrain deformation across the interface, and thus the model is capable of explaining 

experimental observations of strain incompatibility across the interface near fiber-ends. It 

is envisioned that such a model will be useful in discerning the predominant matrix creep 

mechanism at a variety of time periods for a given applied stress and temperature, and thus 

make it possible for the generation of transient deformation mechanism maps for 

composites. 
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I.       INTRODUCTION 

The evolution of many composite materials is a relatively recent technology 

compared to metals, polymers and ceramics [Ref. 1].   Fiber composites are hybrid 

materials in which the internal architecture and composition are varied to produce a 

"designer material", which is suitable for a specific structural or non-structural application. 

Some of the advantages of composites over monolithic materials include: (1) increased 

stiffness, (2) increased strength, (3) lower density, (4) increased fracture toughness, (5) 

potentially higher fracture toughness, (6) higher temperature capabilities, including greater 

creep resistance, and (7) tailorable thermal properties, i.e. coefficient of thermal resistance 

(CTE) and thermal conductivity.   In particular, continuously reinforced composites offer 

substantial improvements in properties over monolithic material for loading along the fiber 

axis, albeit at the expense of isotropy. 

Composites are generally classified into three categories, polymer-matrix 

composites (PMC), ceramic-matrix composites (CMC), and metal-matrix composites 

(MMC) [Ref. 2].   PMCs are fairly common, inexpensive, have relatively low strength, and 

are used in the lower range of the temperature scale (typically less than 500 K, although 

some PMCs may be used up to 600 K).   The fiber reinforcement in PMCs imparts 

stiffness and strength.   Metal-matrix composites (including intermetallic-matrix 

composites) offer significantly higher temperature capabilities (800 to 1300 K). 

Because of the attractiveness of the properties of MMCs over non-reinforced 

metals, MMCs have found several uses in the aerospace and automotive industries over 



the last decade.   For instance, the Toyota Motor Company has used metal-matrix 

composites in diesel engine pistons [Ref. 3], Honda has developed and tested entire 

Aluminum based MMC engine blocks [Ref. 4], Pratt and Whitney have recently started 

utilizing aluminum based MMCs for aircraft engine applications, whereas the United 

States Air Force are using discontinuously reinforced Aluminum composites for various 

material substitution applications in aging aircraft.   Other areas like electronic packaging, 

where the tailorable coefficient of thermal expansion and thermal conductivity of MMCs 

offer substantial advantages, have also seen significant growth of MMC applications, e.g., 

in module frames and card cages. 

Many of the applications of MMCs are exposed to high homologous temperatures 

(T/Tm), either under monotonic or cyclic thermal loading conditions, necessitating the 

development of detailed fundamental scientific understanding and predictive capabilities to 

describe the time dependent deformation behavior of the composite as a whole. Typically, 

reinforcement with fibers enhances the longitudinal creep resistance substantially, whereas 

transverse creep resistance is relatively unaffected.   With all the possible reinforcement 

geometries, the introduction of ceramic or refractory metal long based fibers offers the 

most significant improvement in creep characteristics. 

Because of this, an understanding of the elevated temperature deformation is 

crucial to the effective engineering design and development of continuous fiber metal- 

matrix composites (CFCs) components for engineering applications.   Several studies of 

thermal cycling and creep of MMCs have been reported [Refs. 5-22].   A majority of 

models of creep/thermal cycling of composites assume that only one matrix deformation 



mechanism to be operative throughout the creep life of the composite.   Further, no model 

is available that explicitly accounts for the time dependent relaxation mechanisms at the 

interface.   These can result in significant errors in the prediction of the overall composite 

strain response during creep or thermal cycling. 

This thesis proposes an analytical model for longitudinal creep/thermal cycling of 

continuous fiber reinforced MMCs, incorporating: (1) a unified matrix creep law which is 

capable of handling changing creep mechanisms as a function of the changing stress state 

in the matrix, (2) contribution of internal thermal residual stresses to matrix creep, and (3) 

time-dependent interfacial deformation during creep/thermal cycling prior to fiber 

breakage.   It is envisioned that, in addition to yielding predictive capability and a 

mechanistic understanding of longitudinal creep of continuous fiber reinforced composites, 

this model will facilitate the generation of transient deformation maps [Ref. 23] for 

continuous fiber reinforced composites in the future. 





II.     BACKGROUND 

A.      CREEP 

Early creep experiments conducted by (1) Jech and Weber [Ref. 24] on titanium 

and titanium alloys with continuous and discontinuous molybdenum fibers, (2) Dean [Ref. 

25] on various nickel based alloys reinforced by continuos 0.25 mm diameter fibers, and 

(3) Ellison and Harris [Ref. 26] carried out on Inconel 600 with 27 percent volume of 

continuous and discontinuous tungsten fibers have all demonstrated an increase in the 

stress rupture life of the composite relative to the appropriate unreinforced matrix alloy. 

Since the aforementioned composite systems showed some mutual solubility between the 

fiber and the matrix, the demonstrated increase in the stress rupture life of the composite 

may have been influenced by the chemical changes in the composite.   Creep in silver- 

tungsten composites containing discontinuous fibers with little or no mutual solubility 

were investigated by Kelly and Tyson [Ref. 5] also showed similar results. Their 

investigation indicated that the incorporation of discontinuous fibers greatly reduced the 

rate of creep of the matrix.   In addition, they mention that the rate of creep appears to be 

governed by the rate of creep in shear at the fiber-matrix interface, which is subject to a 

high shear stress.   De Silva [Ref. 6] did not agree with the mechanism proposed by Kelly 

and Tyson [Ref. 5], which ignored the matrix tensile stress for both load and creep 

considerations.   The matrix tensile stress cannot be ignored since even small tensile 

stresses in the matrix produce creep rates comparable to that of the composite.   Secondly, 

the shear-based mechanism did not explain creep in continuous fiber reinforced 

composites (CFCs).   De Silva explained that composite creep is governed by (1) the 



progressively decreasing matrix shear stress adjacent to the interface in discontinuously 

reinforced composites, and (2) progressively decreasing matrix normal stress resulting 

from continued load transfer from the matrix to the fiber in a continuously reinforced 

composite.   Doruk and Yue [Ref. 7] suggested that a closed form equation can be 

extracted from De Silva's [Ref. 6] studies for the time-dependent increase in creep strain 

using three assumptions for the formulation of the model: (1) load transfer from matrix to 

the fiber occurs due to tensile stress relaxation in the matrix until the stresses in the matrix 

and the fibers reach their steady state values; (2) the distribution of the composite stress 

between the matrix and the fiber at any instant of the loading is governed by the rule of 

mixtures, 

ac = ofVf+(7mVm 

(where a and Fare the stress and volume fraction, and the subscripts c,f, and m refer to 

the composite,, fiber and matrix respectively) and, (3) the condition of isostrain elongations 

is valid during creep.   Doruk and Yue's [Ref. 7] for matrix strain (Aem = Aam/E) takes the 

following form: 

Ao- m (K)m[Hß-^i-K(K)jp 

N 

where t = ^ Ar and {ss)   is a known function of a„„ and where ß is the ratio of the 
i 

initial creep rate, b, to the steady state creep rate, es.   This theoretical model of the 

primary creep in a fiber reinforced MMC assumes complete load transfer across the fiber- 

matrix interface.   The creep strain-time relationship in terms of the creep properties of the 



matrix and the fiber can then be computed.   This theoretical model like many others that 

follow assume isostrain conditions across the fiber-matrix interface, and give reasonable 

agreement with experimental results. 

It is believed that during creep, the matrix undergoes stress relaxation by 

transferring stress to the fiber [Refs. 6-11].   During a constant stress creep test, one of 

following may occur: (1) if the applied stress is low, all the of applied stress is eventually 

supported by the fiber (typically stronger and suffer than the matrix) following complete 

matrix stress relaxation, and the composite creep rate becomes zero, or (2) if the applied 

stress is sufficiently high, following complete stress transfer to the fiber, the fracture 

strength of the fiber may be reached, causing the fiber to rupture.   The stress that 

distinguishes situation (1) from (2) has been referred to as a threshold stress [Refs. 8,9], 

below which no permanent microstructual damage occurs.  McLean [Ref. 8] showed that 

below this threshold stress, a composite deforms predominantly by primary creep and 

above this threshold stress, the composite deforms by primary, a brief secondary, and 

tertiary creep.   The tertiary stage is usually associated with permanent microstructual 

damage, e.g., fiber fracture [Refs. 8,9].   McLean further concluded that the indirect 

strengthening by particles or fibers can arise not only by the introduction of a threshold 

stress for deformation but by altering the deformation kinetics as in the case of nickel- 

based superalloys, and can be influenced by the dislocation structure. 

Matsuura et al. [Ref. 9] carried out creep tests on aluminum composite reinforced 

with continuous alumina fibers at temperatures of 573 to 773 K to examine the mechanism 

of high temperature deformation and fracture of the composite in low and high stress 



ranges (i.e., below and above the threshold stress respectively).   These specimens were 

allowed to creep for a period of time, were subsequently unloaded while still at the creep 

temperature.   It was observed that following unloading, the composite underwent time- 

dependent strain recovery, with the total composite strain finally settling down to either a 

finite value, corresponding to the permanent microstructual strain/damage, or to a zero 

value, suggesting no permanent damage.   It was further observed that when the post- 

recovery strain was non-zero, there was evidence of fiber fracture, unless when the post- 

recovery strain settled at a zero value, no fiber fracture occurred.   It was thus concluded 

that the threshold stress corresponded to the critical stress reached to initiate fiber 

fracture, and therefore above this threshold, the composite creep rate would not go to 

zero.   In addition to fiber fracture, it is possible that permanent microstructural damage 

may also occur by relaxation of interfacial shear stresses by time-dependent interfacial 

sliding, although no direct evidence of this is available to date. 

Bullock et al. [Ref. 10] assumed isostrain conditions across the composite in 

investigations of creep in Ni-Ni3Al-Cr3C2 composites at 825°C and 980°C as a function of 

microstructure and fiber aspect ratio, and utilized a separate interfacial boundary layer in 

their model.   By assigning a unique stress dependence (i.e., ob - a0b 

(  ■ Y e 

\e°i,j 

of the power- 

law, where Ob is the mean stress of the boundary layer, s is the strain rate, ando-^, sQb, 

and b are constants) to the interfacial boundary layer, they were able to account for the 

interface deformation.   The same power-law relationship is used describe the stress in the 



matrix and the stress in the fiber (um=<j0 

f  ■ \ s 

\£°«J 
and cjf =<J„ 

f . V 
S 

\£°s; 
respectively, 

where am, Of are the stresses carried by the fiber and matrix respectively and a0m, a0/, 

e0 , e0 ,m and/are constants).   With these relationships and the rule of mixture for this 
m J 

model (Vf+Vm + Vb=l, where V is the volume fraction and the subscripts/ m, and b 

refer to the fiber, matrix and boundary respectively), they investigated two cases, (1) 

where the stress exponents/= m = b, and (2) where the stress exponents are not equal, / 

*m*b.   However, of these models the analytical results were compared with only a 

limited amount of experimental results, since at the time, few experimental studies were 

available. 

Goto and McLean [Ref. 11] also assume isostrain conditions across the fiber- 

matrix interface, and considered a model consisting of a power-law creeping matrix, 

reinforced by elastically deforming fibers, and that included the effect of an interfacial 

region with different deformation characteristics from those of the fiber and the matrix. 

The basic assumption in this model is that the fiber-matrix interface region constitutes a 

separate phase of thickness, S, which is small compared to the fiber radius.   This model 

addressed two types of interfaces where; (1) fiber-matrix slippage since the thin layer 

surrounding the fiber is less capable of supporting a shear stress relative to the matrix 

(equivalent to the case where creep strength of the boundary zone is much less than that of 

the matrix, i.e., si » sm for the same applied stress), and (2) matrix strengthening, occurs 

since the boundary zone creep strength is greater than that of the matrix, (i.e., si « sm), 



resulting in local work hardening.   In the fiber-slippage model, they assume the case of 

totally incoherent fiber matrix interfaces the Orowan loops may collapse completely into 

the boundary and provide a potent mechanism for the transfer of stress between the fiber 

and the matrix. They add, that the absorption of the dislocation loops into the boundary 

contributes to boundary slippage.   In the case of the work hardened model, they assume 

an Em and Ef dependency (Young's Modulus for the matrix and fiber).   When Em > Ef, 

and the dislocations are attracted to the boundary where they will introduce an element of 

slippage while retaining the overall coherency.   They correspond to the ideal strength of 

the composite.   When Em < Ef, the Orowan loops are repelled and stand off at an 

equilibrium distance from the boundary, where a work hardened zone is zone is created 

and is unlikely to contribute to boundary slippage. 

Dlouhy, Eggeler and Merk [Refs. 12-13] recently studied and modeled the uniaxial 

creep behavior of short fiber reinforced aluminum alloys.    The particular mechanical 

features that their model explained are: (1) the sharp decrease in the creep rate during the 

primary stage, (2) the extended secondary creep stage with creep strain modulated by fine 

oscillations, and (3) the slow increase in strain rate during tertiary creep.   They concluded 

that three elementary processes control creep of short fiber reinforced MMCs: (1) loading 

of fibers by dislocations, (2) recovery processes in the work hardened zones around the 

fibers, and (3) multiple breakage of fibers during creep.   Their most important result of 

the study is that primary and tertiary processes are not independent, i.e., stress transfer 

from the matrix to the fiber is generally thought of as the dominant mechanism during 

10 



primary creep; however, stresses can be redirected from the fiber back to the matrix when 

fiber breakage occurs. 

Most of the studies [Refs. 7-13] have evolved different forms of the power-law 

creep equations to represent matrix creep reported in the literature.   Doruk and Yue [Ref. 

7] used the power creep law for steady-state creep rate: 

es = Acr"exp(-AHc/RT) 

(where A is a material constant, cr is the stress, n is the stress component, AHC is the 

creep activation energy, R is the gas constant, and Tis the absolute temperature), and 

attributed the Al/Al3Ni matrix composite to undergo dislocation climb primary creep 

around 0.5Tm assuming a complete load transfer across the fiber-matrix interface. 

McLean et al. [Refs. 8, 10] also considered that the matrix obeyed the steady state power 

law represented by s = Aa" exp(-Q/RT), or a modified form: 

s = A'(a - aj' exp(-0' / RT) 

where a0 is the threshold or friction stress associated with the reinforcement particles that 

resist deformation.   Bullock, McLean and Miles [Ref. 11] also uses a power-law creep 

relation (described earlier) for both fiber and matrix: 

<Xf=°o, 

f . V 
£ 

\S°sJ 

f       ■     \ 
£ 

V£<W 

for yNi-Ni3Al(y')-Cr3C2 composites under a wide range of shear consideration.   Most of 

the reported literature assumes that only one matrix creep mechanism predominates during 

the entire creep life of a composite. 

11 



However, the creep mechanism is not only a function of temperature, but also a 

function of stress.   As discussed previously, the matrix is in a state of continuous stress 

revision.   Therefor, different deformation mechanisms may dominate at different times 

during a creep test, even at a constant temperature. This is illustrated in Figure 1, which 

represents a deformation mechanism map [Refs. 23, 27] for pure aluminum with a grain 

size of 10.0 um.   Assuming that the normalized matrix stress, am/ju (where // is the 

shear modulus) is initially in the plastic region in the vicinity of 10"2 ajju, at a 

homologous temperature, 0.7, the matrix stress is seen to transverse through the Power 

Breakdown region Law region, the Power Law into the Diffusional Flow. 

„•«     -M    -m 
TEMPERATURE.lt) 

o      w     MO     m     m     M 

0-2 0.4 0.6 0.8 
HOMOLOGOUS  TEMPERATURE, Vju 

10 

Figure 1.   Pure aluminum of grain size 10 urn. 
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Therefore, in the illustrated example, representing the matrix creep rate by just a power 

law relationship is not realistic throughout the creep life of the composite.   Power law 

creep represents only a small stress-temperature range for composites as demonstrated 

above. 

Thus, it seems apparent that any composite creep model that is confined to one or 

two of the matrix creep mechanisms depicted in the deformation mechanisms maps is 

unlikely to describe the complete creep response over a wide range of applied stresses and 

temperatures. This necessitates the consideration of a unified matrix creep law for use in 

composite creep models. Further, the majority of the models represented in the literature 

[Refs. 7-15], assume that the interface is rigid, i.e., isostrain conditions prevail between 

the fiber and the matrix. 

Significant experimental evidence now exists suggesting that the rigid interface 

condition between the fiber and the matrix is not always maintained during creep and/or 

thermal cycling [Refs. 9, 16, 28-35].   Matsuura et al. [Ref. 9] conducted creep test on 

continuous alumina fiber reinforced aluminum composite.   In the case for low stress levels 

without excessive fiber breakage, and following the primary stage creep, it was determined 

that the specimens were actually undergoing a measurable finite creep rate on the order of 

10" to 10"10 s"1.   Weber et al. [Ref. 33] set up experiments to determine the effects of fiber 

and interface variables on the longitudinal creep of y-TiAl reinforced with continuous 

alumina fibers for both weak and strong interfaces at 982°C.   A transient creep response 

was noted in both cases (weak and strong interfaces).   Schwenker and Eylon [Ref. 34] 

conducted similar tests for Ti-6A1-4V composite reinforced with SCS-6 SiC continuous 

13 



fibers at low stresses at temperatures of 450, 538 and 650°C.   At the two lower 

temperatures, 450 and 538°C, the predicted creep response was noted; however, at the 

same low stresses but at a higher temperature of 650°C , a measurable steady state creep 

rate was observed.   Acoustical readings taken during the testing at 650°C at low stresses 

revealed negligible fiber breakage.   At low stress levels, in the absence of fiber fracture, 

any measurable time-dependent deformation in a continuous reinforced fiber composite 

may be fully explained by the effect of interfacial creep. 

Several other studies involving both creep and thermal cycling have all indicated 

characteristics best explained by interface creep mechanisms [Refs. 16, 28, 30-32, 35]. 

Thermal cycling experiments conducted by Dutta et al. [Ref. 16] and Yoda et al. [Ref. 28] 

demonstrate that the isostrain condition between the fiber and the matrix is not always 

maintained.   Uniaxial longitudinal tensile creep test conducted on continuous reinforced 

fiber MMCs have been observed to have the matrix extrude beyond the fiber extremities in 

the absence of fiber breakage.   This clearly suggests the breakdown of the isostrain 

condition, at least near the region of high shear stresses at the fiber ends. 

Other studies [Refs. 30-32] also suggest the existence of some form of time- 

dependent interfacial sliding mechanism.   Rosler et al. [Ref. 30] analyzed the effect of 

diffusional relaxation on creep strength in composite materials, and developed a 

constitutive equation for the overall creep rate that was dependent on the rate of 

diffusional flow along the interface.   From this creep law, a critical aspect ratio below 

which creep strength is lost and a critical transition temperature above which creep 

strength is maintained is eliminated by rapid interface diffusion.   According to the model 

14 



proposed by Kim and McMeeking [Ref. 31] the composite creep strength is equivalently 

impaired by two independent and separate interface mechanisms: (1) interface with 

minimal viscous drag (Newtonian viscous slip driven by interfacial shear stress) and (2) 

rapid diffusion along the interface (diffusional creep driven by the radial stress acting along 

the interface).   Using a similar approach to model the interface deformation with unit cell 

analysis and a finite element model (FEM), Nimmagadda and Sofronis [Ref. 32] reached 

similar conclusions but take exception with Kim and McMeeking in the magnitude of the 

effects of slip and diffusion which underestimates the creep strength of the composite. 

These two mechanisms, slip and diffusion have the same stress dependence and the same 

direction of flow; and as such, it may be reasonable to assume that there may be one single 

interface creep law that combines the effects of both normal and shear stresses at the 

interface. 

Experiments conducted by Funn [Ref. 36] used two models of single fiber 

composite (SFC) systems in isolation from matrix creep mechanisms.   The two systems 

were chosen such that one had limited mutual solubility between the fiber and the matrix 

and the other had none in a fiber push-out apparatus to measure the creep characteristics 

of the interface.   The interface was shown to display Bingham flow (diffusional flow with 

a threshold stress), for both model systems with the range of stresses sustainable by the 

interface without fiber fracture.   An accompanying analytical yielded an explicit 

constitutive law which describes the stress, temperature, and the matrix and interface 

property dependence of interfacial creep, and indicated that the experimentally observed 

15 



threshold stress is directly attributable to the radial residual stress acting on the fiber 

matrix interface. 

The form of the proposed analytical interfacial creep law is: 

where: 

r0 = 2l —I GR ,   is the threshold shear stress, 

Si - thickness of the grain boundary Qi  - atomic volume of the interface, 
ti - average applied interfacial shear stress Qi  - activation energy for the rate 
k - Boltzman constant controlling process 
jR - universal gas constant T   - absolute temperature 
h -peak to peak height of interface A   - period of the interface 

In the present work, this interfacial sliding law is incorporated in the composite 

creep model, in order to allow for non-isostrain deformation of the fiber and the matrix. 

Thermal cycling experiments conducted on continuous fiber reinforced composites 

offer the most dramatic evidence of an independent interface deformation mechanism and 

is discussed in detail in the next section. 
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B.      THERMAL CYCLING 

The differences in the coefficient of thermal expansion (CTE) between the matrix 

and the fiber can induce large internal stresses in the composite during thermal cycling, 

which can result in the number of unusual effects in the strain response during cycling 

[Refs. 16-18, 28-32, 37-40].   These effects include: (1) large strain hysteresis, (2) residual 

plastic strain following one or more thermal cycles, and (3) a highly non-linear thermal 

expansion coefficient.   These effects have been attributed to: (1) differences in the 

longitudinal coefficients of thermal expansion between the fiber and the matrix, (2) heating 

and cooling rates, (3) strain history, and (4) creep deformation. 

A number of these thermal cycling experiments conducted on continuous fiber 

reinforced metal-matrix composites offer the most dramatic evidence of an independent 

interface deformation mechanism [Refs. 16, 28-32].   These composites usually display a 

large strain hysteresis during thermal excursions.   A permanent residual strain may also be 

observed after the first few thermal cycles.   The strain hysteresis usually persists with 

continued cycling; however, additional residual strains may not necessarily occur. 

Examples of the strain hysteresis curves are found in (1) Garmong's [Ref. 18] study of Al- 

Al3Ni eutectic metal-matrix composite cycled between 300 and 850 K, (2) Dries et al. 

[Ref. 40] rapid thermal cycling of PI 00 graphite-6061 A metal-matrix composite cycled 

between 116 and 394 K, and (3) Mitra et al. [Ref. 17] slow thermal cycling between 298 

and 813 K of the same metal-matrix composite as Dries et al. [Ref. 40] studied.   In the 

above cases, three observations were made, (1) the strain hyteresis was attributed to the 

varying matrix stress state of the composite, (2) plastic deformation of the matrix at the 
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lower temperature of the cooling leg contributes to the residual strain, and (3) creep 

strains at the high temperature end of the thermal cycle.   Characteristic curves of strain 

versus temperature during a thermal cycle may indicate a "knee".   The "knee" during the 

heating leg of the thermal cycle is due to the compressive creep strains induced in the 

matrix; whereas, during the cooling leg, it is due to the tensile yielding of the matrix. 

Dutta et al. [Ref. 16] studied the effects of thermal residual stresses on the strain 

response of graphite-aluminum continuous fiber composites during thermal cycling which 

revealed time-dependent strains evident that the matrix has crept out pass the fiber ends to 

relieve the thermally imposed tensile stress.   It was also noted during the experiments, 

that stress relaxation via matrix creep can give rise to time-dependent strains under 

isothermal conditions with an external applied stress.   After hundreds of cycles in the 

homologous temperature range between 0.35 and 0.80 of tungsten wire reinforced copper 

composites by Yoda et al. [Ref. 28], they observed the growth per unit length increased 

after a given number of cycles with increasing holding time at the upper cycling 

temperature; and that it was also dependent on fiber length, fiber diameter and fiber 

volume fraction.    Scanning electron micrographs of the 10 volume percent tungsten wire 

reinforced copper composite in Reference 28 showed the copper matrix extruding pass the 

ends of the tungsten fibers of 100 |im diameter by as much as 1.0 mm for samples that 

were initially 10.0 mm long.   This observation suggests that interface sliding plays an 

important role in elevated temperature deformation in this class of material. 

A number of analytical representations [Refs. 37-39] modeled the longitudinal 

strain response of the unidirectionally reinforced composite during thermal cycling. 
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However, most are based on an one-dimensional isostrain model where the fiber-matrix 

interface is assumed perfectly bonded, (2) the fiber undergoes thermo-elastic deformation, 

and (3) the matrix is subject to thermal, elastic, plastic and time dependent strains. 

Garmong [Ref. 37]makes similar assumptions and assumes that, (1) Poisson effects are 

dismissed, (2) stresses and strains are uniform within each phase, (3) no interfacial sliding 

may occur, and (4) the composite is metallurgical^ stable, i.e., no physical or chemical 

changes occur in the composite structure during thermal cycling or at exposure elevated 

temperatures.   This was a first step in analyzing composite behavior in conditions of 

thermal cycling with applied loads helped provided a framework which the various 

material and test parameters for observations of deformation and failure.   Because of 

these assumptions, the thermal cycling strain response shows a strong dependence on the 

heating and cooling rate (i.e., slower cooling rates result in greater permanent strains. 

Another factor is the coefficient of thermal expansion (CTE).   The coefficient of thermal 

expansion modulates non-linearly with temperature due to the varying stress and strain 

states within the composites during thermal cycling. 

Dutta et al. [Ref. 16] used the same assumptions to model the behavior of the 

strain response of 20 volume percent PI00 graphite-6061 Al metal-matrix composite 

between 300 and 800 K at 1/60 Ks"1 during thermal cycling.   The results from their 

analytical work on thermal cycling predicted that, (1) significant creep strains are induced 

during both legs of the thermal cycle, (2) significant plastic strains are induced in the 

matrix during cooling, and (3) creep strains result in a strong heating/cooling rate 

dependence of the strain response. 
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It is not only matrix plastic and creep deformation that may cause progressive 

degradation of the mechanical properties of the composite [Ref 17], but damage to the 

fiber-matrix interface as well.   Like the matrix plastic and creep strains, the extent of the 

interfacial damage depends on the mechanical properties of the fiber and matrix, 

coefficients of thermal expansion, the heating/cooling rates, as well as the nature of the 

interface itself. Interfacial damage may occur via interfacial sliding, where the matrix may 

extrude past the fiber ends or the fiber may extrude pass the matrix.   Evidence of 

interfacial sliding after thermal cycling is found in micrographs of graphite fiber ends 

extruding pass the aluminum matrix in Reference 17 (slow heating and cooling), and 

tungsten extruded with respect to the copper matrix in Reference 28 (rapid heating and 

cooling). 

Thus the importance of the fiber-matrix interface, where it may slide, cannot be 

discounted nor neglected.   This necessitates incorporation of interfacial sliding in any 

phenomenologically correct model of creep and/or thermal cycling. 
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III.    OBJECTIVE 

The purpose of this work is to develop a unidirectional model capable of 

simulating the overall axial strain response of a continuous fiber reinforced metal-matrix 

composite during both isothermal and thermal cycling conditions, with or without an 

externally applied stress. 

The model incorporates the effects of: (1) thermal history of the composite, and 

the influence of internal residual stress, (2) evolving matrix deformation mechanisms (due 

to continuous matrix stress state revision) via the use of unified creep laws, and (3) the 

breakdown of isostrain conditions at the fiber-matrix interface.   The model assumes that 

the fiber is thermo-elastic, the matrix is thermo-elastic-plastic-creeping (with the creep rate 

being represented by Garofalo's unified dislocation creep law [Ref 41], and Frost and 

Ashby's unified diffusion creep law [Ref. 23]), and that the interface may undergo time- 

dependent diffusional sliding following a Bigham type law, as proposed in Reference 40. 

In the subsequent sections, the following longitudinal creep/thermal cycling models 

for continuous fiber reinforced composites are presented, (1) with isostrain conditions 

across the fiber-matrix interface (Section A, Chapter IV), the Isostrain Model, and (2) the 

model with interfacial sliding (Section B, Chapter IV), the Non-isostrain Model. 
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IV.    ANALYTICAL MODELS 

A.      ISOSTRAIN CONDITION ACROSS THE INTERFACE, 
UNIFIED MATRIX CREEP LAW 

The following analysis of composite creep is based on a model by Garmong [Ref. 

37] as modified by Tyson [Ref. 38].   The model by Garmong and Tyson [Refs. 37, 38] 

assume that, (1) the composite deformation is one-dimensional, (2) the stresses and strains 

are uniform within each phase, (3) there is no interface sliding, (4) no chemical or physical 

changes in the structure (metallurgically stable), (5) the temperature is uniform throughout 

the composite, (6) fiber is thermo-elastic, and the matrix is thermo-elastic, plastic and 

creeping and follows the power-law for creep.   In the following analysis, Garofalo's 

unified dislocation creep law [Ref. 41] and Ashby and Frost unified diffusion creep law 

[Ref. 23] are utilized in order to demonstrate High Temperature Power Law Creep (lattice 

diffusion controlled creep), Low Temperature Power Law Creep (pipe diffusion controlled 

creep), Power Law Breakdown Creep, Coble Creep, and Nabarro-Herring Creep.   The 

object is to be able to discuss the predominant creep mechanism at any instant during 

creep or thermal cycling.   In addition, the model incorporates the externally applied 

stresses under a wide array of initial matrix conditions and applied stress ranges. 

For a composite having two phases, the rule of mixtures given below applies: 

ac = afVf+cjmVm (1) 
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where, <rand Fare the stress and volume fraction, and the subscripts c,f, and m refer to 

the composite, fiber and matrix respectively.   To ensure continuity at the fiber-matrix 

interface (isostrain), the strain continuity equation may be expressed as: 

sm=8f (2) 

where e is the strain, and the subscripts m and/refer to the matrix and fiber respectively. 

The strain of either phase is: 

e = sth+sel+sp,+scr (3) 

where the superscripts th, el, pi and cr refer to thermal, elastic, plastic (time independent) 

and creep deformation.   For the temperature range of interest, the fiber for most MMC's 

may be assumed to be elastic (i.e., sT
f = erf = 0).   The thermal strain relation for the fiber 

and matrix is: 

= lafdT (4a) ef 

th 

T, 

: = \ccmdT (4b) 

Where a is the coefficient of thermal expansion (CTE), and Ti, T2, are the initial and final 

temperatures respectively.    The elastic stress strain relation for the fiber and for the 

matrix constituent is: 

sf=lT (5a) 
E

f 

sm=^ (5b) 
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where E is Young's Modulus.   The plastic strain, as derived from the Ludwik relation is: 

pi 
e„ = (6) 

where <J% is the matrix yield stress, Kj and n is the work hardening coefficient and work 

hardening exponent, respectively. 

The creep strain, e% may be obtained as: 

= }&:<* (7a) 

for isothermal creep or 

-;<fT' dT (7b) 

(dTY 
for thermal cycling creep, where   —      is the reciprocal of the heating/cooling rate. 

\dt) 

The creep rate sZ, has contributions from both dislocation based and diffusional 

mechanisms and may be represented as: 

. cr        . diff        . disl 

mm m (8) 

where the superscripts dijf and disl are for the diffusional and dislocation creep (Appendix 

A describes the conversion of the relevant creep expressions from the shear strain rate- 

shear stress (y - r ) form given by Ashby and Frost [Ref. 23] to normal- strain rate, 

normal stress form components, respectively.   The diffusional creep rate (s*ff) may be 

written as: 
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.diff     14Q    dig 

kTd 
2 ^eff v m (9) 

where: D* = Ueff DL + 3D, 
gb 

(10) 

DL=D0e 
-QL 

/kT 

-e*/ 
8Dgb=8D0te   "/to- 

ol) 

(12) 

Q - atomic volume D  - diffusivity 
d   - the matrix grain D0 - frequency factor 
6 - effective thickness Q  - activation energy for the appropriate 

of the grain boundary diffusion path 
b   - Burgers vector k   - Boltzman constant 
T   - absolute temperature 

and the subscripts eff for effective, L for lattice (volume), gb for grain boundary. 

The dislocation creep term (e*sI) may be written in the Sinh form originally 

proposed by Garofalo [Ref. 41] as modified by Frost and Ashby [Ref. 23]: 

.disl 
e„  = 

^vrr1 AGJ> *, 
Ka'J      kT     eff sinh 

a' 

.SG„ 

n\ 

(13) 

where: D*s,= DL + 
10 
2_2 

.3b G, 
GnflPp (14) 

apDp = apDpoe /kT 
(15) 

nl - creep exponent 
Gm - shear modulus 

and the subscript/? is for pipe. 

A - creep constant 
a  - cross sectional area of the dislocation core 
a' - power law breakdown threshold 
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Substitution of Equations (9) and (13) into Equation (8), provides the total matrix 

creep strain: 

J1kTd2       eff      m 

r   /TV1 s 
\a J 

AGJD7 

JcT      eff 
sinh 

a 
■ex. 

K^Gn, J 

n\ 

dT_ 
dT      (16) 

The total matrix strain is found by substitution of Equations (4b), (5b), (6) and (16) into 

the left-hand side of Equation (2) results in; 

2 Om 

7        ys\ 

± M 
14C2     diff 

D*<r om + 
'P »1 

kTd 
2 ueff um 

Ka'J 

AGmb    disl 
Deff 

kT 
sinh 

a 

Sc m 
VV3Gm      J 

»n ■ N-i 
dT 

dt 
dT 

and deriving the fiber strain found by substitution of Equation (4) into the right hand side 

of Equation (2) after replacing af as a function of am (af = — 2L-2L), from Equation 
V f 

(1), the rule of mixtures: 

2 a 

\a  dT+-*L + 

i m 

ys 
a    -a 

m       m 

K 

1     \ 

± f 
14Q     diff 

■D      <y    + 

kTd 
2    eff    m    \^a.J 

(fA"lAGJ    disl 
D 

kT      eff 
sinli 

f M"1 

a' '-A"1 
— |    dT 

\dt; 

I <ZfdT + 
T.       J 

aa ~ °mVm (17) 

Following Tyson [Ref. 38] Equation (17) may be expressed in differential (i.e.; 

incremental) form as: 

Aem = Aef 

AamAT+ Aslm + Ae* + AeZ = afAT + As* 
(18) 
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Solving for Aam after substituting the appropriate expanded terms from Equation (17) into 

Equation (18), gives the following: 

14Q     diff (VT 
n\ 

Aa„ 
kTd 

AGJo    disl 
Deff 

-inl 

sinh r      "m 
V3Gm       J 

-1 

AT- 
ACT„ 

EfVf 

fit 1 1 
(19) 

■ + — + ■ 

where 

EfVf     Em     RWH 

Aa = am-af 

RWH = 4°J&. = K.n 
(o-»-^«) 

-,'V"1 

K, 

(19a) 

(19b) 

In Equation (19), Aaa = 0, where a„ = 0 or constant for both thermal cycling or isothermal 

creep/thermal cycling conditions.   Therefore, Equation (19) does not account for the 

effect of an externally applied stress.   The methodology of incorporating the effect of <r0 

in the solution procedure is outlined later in section IV. A. 2. 

1.       CALCULATION OF INDIVIDUAL MATRIX 
STRAINS 

During each iteration, the incremental strains are calculated as follows: 

As   = AccAT (20a) 
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el   A<T 

As   =- m 

m     E. m 

Ast = A°"" 
RWH 

(20b) 

(20c) 

cr       2 
Aem = k\ 

14Q     diff 
D~ am + 

kTd 
2ueJT m \a'J 

nl 
AGmb    disl 

-i«i 

sinli 
a' 

W/3G;„      y 

-1 

{£) AT (20d) 

Finally, the total matrix stress and strain components are updated as: 

°"m(0 = °"m(,-l) + A<7n 

rt th th 

el el el 
Sm(j) ~ Sm(j-\) + ASm 

pi     _     pi pi 
£m(i) ~ £m(i-\) + &Sm 

cr cr cr 
£m(i) = Sm{i-\) + &Sm 

(21a) 

(21b) 

(21c) 

(21d) 

(21e) 

The total matrix creep strain can be further disseminated into Power Law (PL) creep, High 

Temperature (dislocation lattice diffusion controlled creep) PL creep, Low Temperature 

(dislocation pipe diffusion controlled creep) PL creep, Power Law Breakdown (PLB) 

creep, Coble creep, and Nabarro-Herring creep.   The following equations were used to 

determine the individual creep strain components; 

Power Law dislocation creep strain: 

PL AGh 

kT 3 

ACT \* 
m(i-I) 

6G„ 
a D 

p   p 

a' 

V3Gm 
ACTm('-,) At      (22) 
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High Temperature (volume diffusion controlled climb) power law creep strain: 

HT PL 

m 
AGJb ( /TV 

kT 
£ 

\a J M 
a' 

IMS*™ 
At (22a) 

Low Temperature (core diffusion controlled climb) power law creep strain: 

LT PL     AGJb 

KT 

10 (Aa„,^\ m(i-l) 

bGm 

a„DB p   p 

a' 

V3GTäCT-<'-' 
At        (22b) 

Power Law breakdown (transition from climb-plus-glide to glide alone) dislocation creep 

strain: 

PLB     AG„p(S\ 
sm    = —rr\ "7 kT   \a'J 

DL+- 
10 Aa \ 

m(i-l) 

K    bGm    J 
OpDp sinli 

a' 
-ACT, :sGr m{i~l) J

m 

PL 
At-sm At 

(23) 

The Power Law Breakdown creep strain is given in above form when the threshold matrix 

stress is reached or exceeded (the Power Law for creep strain breaks down). 

Coble (grain boundary) diffusional creep strain: 

Coble _   14Q (it 
8DgbAam0_x)At (24) 

Nabarro-Herring (lattice) diffusional creep strain: 

£m     = 2DLA°n,(i-»At 

kTd 
(25) 

where At, is the time step in seconds. 
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Equation (19) is incrementally solved during thermal cycling or isothermal creep 

(with temperature or time as the independent variable, respectively) using a computer 

program (Appendix C) written in the MATLAB" programming language. 

2.       INCORPORATION OF APPLIED STRESS IN MODEL 

The above algorithm does not account for the effect of the applied stress (aa), 

since the term aa does not appear in Equation (19) (Aaa = 0 for a constant a„ in both 

thermal cycling or isothermal creep/thermal cycling conditions). 

In order to account for the applied stress (<x„), one needs to compute the stress 

induced in the matrix due to <ra (crj).   Depending on the initial residual matrix stress 

state (amo) prior to the application of <ja, six scenarios can occur.   They are described in 

Tables 1 and 2, along with a listing of the corresponding expressions for er J. 

The incorporation of the effect of the applied stress in the initial value of <jm, prior 

to the start of the iterative solution outline above, is updated as follows: 

total ap 
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B.      NON-ISOSTRAIN UNIFIED LAW ANALYSIS 

The conditions across the interface may be modeled as shown in Figure 2.   Here, 

the matrix is allowed to undergo a different longitudinal strain relative to the fiber.   This is 

accommodated by interfacial sliding due to the presence of interfacial shear stresses near 

the ends of the fiber.   The interface may be thought of as a periodic boundary with a 

Fibep Matrix 

r-> 
ri~*\ Figure 2a 

-rf+h->| 

u = fiber displacement 
w=v-u v = matrix displacement 

w = hy , interfacial displacment 
tan 0 = Yj= (v-u)/h 

TM    Figure 2c     tan emax = Ymax= (lm-lf)/2h 

Figure 2.        The model represents various displacements near the end of the fiber. 

peak to peak height of length h, which is assumed to represent the "width" of the 
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interface, and of periodic lengths, represented by A.   A simplified model based on Figure 

2a is shown in Figure 2b.   The dotted lines represent the displacements in the fiber, 

interface and matrix.   Dotted line a-d is the initial reference line in the undeformed state. 

Dotted lines a'-b', b'-c', and c'-</'represent the displacements after longitudinal 

deformation of the composite has occurred, and u represents the fiber displacement, w is 

the interfacial displacement(equal to hyi, where yt is the interfacial shear strain), and v the 

matrix displacement.   The details of the interfacial geometry are shown in Figure 2c. 

On a global scale, it may be assumed that v * f(r), i.e., sm is constant for all r. 

However, very close to the interface, v = ft>), and this results in an interfacial shear stress 

Ti, which drives interfacial sliding.   The interfacial shear strain at any value of z may be 

represented as: 

= v(r = rf+h)-u(r = rf) = z(l + g„) - z(l + sf) 
7i h h 

or: *=£(*--*/) (26> 

where   0 < z < —.   At z = —, the shear strain reaches its maximum value, which is 
2 2 

given by: 

'"=£(«•-') (27) 

Equation (26) forms the strain continuity equation for the non-isostrain condition, instead 

of S/= sm for the isostrain condition. 
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In Equation (16), sm has four components: e*, em, s
Pl

m, fiC;and £7 has two 

th        el 
components: ef, ef.    These can be found using the same approach as the analysis for 

the isostrain condition found in section A of Chapter IV. 

The interfacial creep rate proposed in Reference 40 is utilized to find y%: 

Yi = Ki(*i ~ r0) (28) 

where: K = 
kTh* 

(28a) 

The interfacial shear stress^, in Equation (28) may be obtained from the following 

relationship (Appendix C): 

L-IA     ,, .     „x On (em-ef)[2-^)=(M + N)ri+^r: (29) 

where  M = hKAt 

N = 
1 1 A . 

.0.    K"      *ff   . 
/y-ln 

Q = nr"fAdislAt 
rRl-"-r^ 

K    
l~n    j 

Adtff - 

42Qf 

kTd fr+f»-) 
Adisl = {S)n+lAD# GJ> r i v 

kT ^Gmj 

ys 
Xm 

df 
h 
Qj 
K 
K" 

Original length of the fiber [m] 
Critical fiber transfer length [m], and may be approximated as: 

4=- ys    f 
2r, 

- Fiber fracture stress [Pa] 

- Shear yield strength of the matrix [Pa] 
- Diameter of the fiber [m] 
- Peak to peak height of interface [m] 
- Activation energy of the appropriate diffusion path [mV1] 
- Work hardening coefficient in tension [Pa] 
- Work hardening coefficient in shear [Pa] (Appendix D) 
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Gm - Shear modulus [Pa] 
n - Stress exponent 
b - Burgers vector [m] 
d - Grain size [m] 
S - Effective thickness of the grain boundary [m] 
Dgb - Grain boundary diffusion [mV1] 
DL - Volume diffusion [mV1] 
Deff - Effective diffusion [mV1] 
A - Dorn constant (for normal strain rate, s) 
Q - Atomic volume [m3] 
k - Boltzmann's constant [1.381e-23 J K"1] 
R - Gas constant [8.314 J mole*1 K*1] 
T - Absolute temperature [K] 
rf - Radius of the fiber 
R - Radius from center of fiber to an arbitrary radial point 

The threshold stress (Appendix E), z0 in Equation (28) may be estimated as: 

"480 
T„ = In 

rfr 
-0.60 (30) 

where A is the period of the interface and <JR0 is the radial residual stress acting on the 

interface at 300 K. 

In incremental form, the interfacial shear strain may be written as: 

Ari=r^ = ^ffL(ri-T^ (31) 
kin 

Equation (26) may be expressed in incremental form as: 

Ay^^ASn-ASf) (32) 

Substitution of Equation (31) in Equation (32) results in: 

K-^)=K)^(--'-*> <33) 
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Where the terms Asm and Asf are given by Equation (18), Equations (20a) through (20d), 

Equations (21a) through (21e), and Equations (22) through (25) in section A Chapter IV. 

Substituting for Asm and Asf in Equation (33), the incremental matrix stress Aam results in 

the following equation: 

A \mkto) EfVf    Kh)   kTh2   X'     o) 

Aam = J^ + l + _j_  
EfVf 

+ Em
+ RWH 

where sm is given by Equation (16). 

The procedure to determine the various strains with or without an external applied 

stress is identical to the isostrain case discussed in Subsections 1 and 2 of Section A 

Chapter IV. 

Sample calculations for the isostrain model are shown in Section A Chapter V. 
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V.      SAMPLE CALCULATIONS 

A.      MATERIAL PROPERTIES 

Results for sample calculations based on the model for isostrain conditions the 

fiber-matrix interface (Section A Chapter IV) are shown in this chapter.   The hypothetical 

composite consisting of a 0.4 volume fraction of continuous fiber SiC in a 1100 Aluminum 

matrix.   The properties used for the computations are listed below: 

MATRIX                   FIBER 
(1100 Al)                         (SiC) 

Melting Temperature [K] 933.47 
Coefficient ofThermal Expansion (CTE) [1/K] 23e-6                             4e-6 
Young's Modulus at 300K [Pa] 65000e6                           450000e6 
Volume Fraction 0.6                                   0.4 
Shear Modulus at 300K [Pa] 25000e6 
Temperature Dependence, (Tn/GmXdGn/dT) -0.5 
Work Hardening Constant [Pa] 500e6 
Work Hardening Exponent 1.0 
Lattice Diffusivity Frequency Factor, Di0 [m

2/s] 1.7e-4 
Lattice Diffusion Activation Energy, Qj [J/mole] 142000 
Grain Boundary pre-exponential, 8Dgbo[m3/s] 5e-14 
Grain Boundary Activation Energy, Qgb [J/mole] 84000 
Pipe pre-exponential, apDj» [m4/s] 7e-25 
Pipe Activation Energy, Qp [J/mole] 82000 
Burgers vector, b [m] 2.86e-10 
Atomic Volume, Q [m3] 1.66e-29 
Dorn Constant, A 

^A(°AD*G»b 
\o.)     kT 

3.4e6 

Stress Exponent for Creep Equation 4.4 
P-L Breakdown Threshold, a' [am/Gm] 1000 
Grain Size, d [m] 25e-6 
Universal Gas constant, R [J/ mole-K] 8.314 
Boltzman constant, k [J/K] 1.38e-23 

TABLE 3.      MATERIAL PROPERTIES and CONSTANTS [Refs. 23, 42, 43] 
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A non-linear fit was obtained for the yield strength versus temperature data for 

1100 Aluminum based on the data taken from reference 43 for temperatures less than or 

equal to 625 K.   A linear fit between the yield strength and temperature greater than 625 

K is covered.   This is shown in the Figure 3. 

• Power Law 2 fit 
© St Line fit           1100AI-YSVST   data 
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Figure 3 Curve fitted yield strength of 1100 aluminum as a 
temperature [Ref. 43]. 

function of 

B.      THERMAL EXCURSIONS FOR THERMAL CYCLING 
AND ISOTHERMAL CREEP SIMULATIONS 

The Aluminum-SiC composite is cooled from the fabrication temperature (T&b) OF 

800 K to ambient temperature of 300 K, at constant rate of 1/60 K/second (Ks"1).   At the 
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fabrication temperature, the matrix stress and strain are assumed to be equal to zero.   The 

final matrix stress and matrix strain following cooling to 300 K are used as inputs for 

subsequent calculations. 

1. Thermal Cycling Simulation 

The composite is heated at a rate of 1.0 Ks'1 from 300 to 700 K.   The final matrix 

stress and strain at 700 K are used as inputs for the simulations of the cooling leg from 

700 to 300 K at constant rate of 1/60 Ks"1.   This heating and cooling half legs constitute 

one thermal cycle between 300 to 700 K.   A discussion of the heating leg of the thermal 

cycle is presented in Section B. 

2. Isothermal Creep Simulation 

Simulations of isothermal creep under conditions of constant applied stresses were 

conducted at various temperatures (400, 523, 673, and 700 K). The result for isothermal 

creep at 673 K at an applied stress of 50 MPa are discussed in Section C. 

Following the initial conditions from the cooling from fabrication temperature to 

ambient temperature is heated at 1.0 Ks"1 to the creep temperature.   Then, the matrix 

stress and strain states immediately after the application of the external stress are 

calculated, following which, the time dependent simulation of deformation is carried out. 

43 



C.      THERMAL CYCLING: HEATING LEG FROM 300 TO 700 K 

Only a discussion of the heating leg of the thermal when the conditions of zero 

applied stress is provided to demonstrate the application of the isostrain model to thermal 

cycling simulations. 

The following Figures 4 through 9 represent the various conditions of stresses and 

strains as the 0.40 volume percent SiC 6061 aluminum metal-matrix composite 

commencing with an initial residual matrix stress of 36.414 MPa and initial residual strain 

of-2.1214e-03.   (The matrix stress of 36.414 MPa and strain of -2.1214e-03 result from 

cooling from the fabrication temperature of 800 K to 300K.)   The thermal excursion 

constituted heating from the initial temperature of 300 K to the final temperature of 700 K 

at a heating rate of 1.0 K per second. 

Figure 4 is a plot of the composite strain along the longitudinal direction.   Around 

390 K, a distinct 'knee' is observed where the composite displays a change in the 

coefficient of thermal expansion (CTE), which is given by the slope of the strain versus 

temperature curve. 

Figure 5 shows the predicted residual matrix as a function of temperature. As the 

composite is heated, the matrix stress is progressively relieved.   Complete relief of the 

composite is seen around 360 K where the matrix stress becomes compressive and reaches 

a maximum (approximately -50 MPa) at around 390 K.   At 700 K, a compressive residual 

matrix stress of 1.9 MPa was predicted.   Note that the 'knee' observed in Figure 4 

corresponds to the 'knee' in Figure 5. 
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The predicted thermal, elastic, plastic and creeping cumulative strains during the 

entire heating temperature excursion is depicted in Figure 6. No plastic deformation is 

observed because the residual stress at all temperatures is less than the temperature 

dependent matrix yield strength.   Around 390 K, matrix creep processes are activated. 

Because of the presence of compressive matrix stress, compressive creep strains are 

observed.   As expected, the thermal strain monotonically increases with temperature, and 

elastic strain shows a variation similar to that of the stress.   It is evident that the creep 

deformation after 390 K is responsible for the 'knee' observed in Figure 4. 

Figures 7 through 9 shows variation of the incremental creep strain components 

due to the various mechanisms as function of temperature during heating.   The 

components plotted include both dislocation and diftusional creep.   The dislocation creep 

is further subdivided into power law breakdown creep and total power law, in which total 

power law can be split up into high temperature power law and low temperature power 

law creep.   These are depicted in Figure 8. The diftusional creep can be further be broken 

down into Coble and Nabarro-Herring creep, shown in Figure 9. 

It is apparent from Figure 7 that the primary contribution to the overall creep 

strain is from dislocation creep.   The total dislocation creep strain may be divided into 

power law creep (including high temperature power law and low temperature power law 

creep), and power law breakdown creep.   These components are individually plotted in 

Figure 8.   Power law breakdown creep becomes active at approximately 375 K and 

dominates creep mechanisms up to 420 K, reaching a maximum at 400 K.   This 

corresponds to an increasing matrix stress that is also maximum in the vicinity of 400 K. 
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At higher temperatures, and relatively lower stresses, diffusional creep begins to 

contribute to the overall creep strain.  In this particular case it is a very small contribution 

compared to the contribution form the dislocation creep mechanisms.   As expected, Coble 

creep is predominant at the lower temperatures, starting around 450 K in Figure 9; and 

Nabarro-Herring creep is predominant at the higher temperatures, and dominates at a 

temperature greater than 685 K (Figure 9). 

As shown above, the model appears to yield reasonable predictions of the various 

deformation mechanisms, which dominate during the different temperatures and stresses 

during the temperature excursions. 
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D.      ISOTHERMAL CREEP WITH CONSTANT APPLIED 
STRESS 

The application of the model to isothermal creep conditions at a temperature of 

673 K and under a constant applied load of 50 MPa is discussed for a 40 volume percent 

continuous SiC fiber reinforced 1100-Al matrix composite with a grain size of 10 [im. 

It is to be noted that the applied composite stress of 50 MPa is large enough to 

cause some plastic deformation of the matrix prior to creep.   Figures 10 through 15 

represent the various conditions of stresses and strains as the composite commences 

creeping isothermally with an initial residual compressive matrix stress of 2.4023 MPa and 

an initial residual strain of-5.0001e-04 (the initial residual matrix stress and residual 

matrix strain are the results form cooling of the composite from the fabrication 

temperature to ambient temperature).   The behavior is shown only for the first 300 

seconds of creep, since rapid changes in stress and strain occur during this initial period 

under the assumes conditions (50 MPa at 673 K). 

Figure 10 shows the cumulative creep strain curve as a function of creep time. 

Clearly only a primary stage is observed up to 300 seconds.   Correspondingly, the matrix 

stress in Figure 11 is seen to decrease, indicating that the matrix is undergoing stress 

relaxation, resulting in the progressive transference of the applied stress to the fiber. 

Interestingly, the matrix stress decreases very rapidly after a few seconds after the starting 

value and then decreases more slowly.   This is because the high initial matrix stress drives 

the rapid matrix creep, causing accelerated matrix stress relaxation.   Figure 12 shows 

plots of the cumulative matrix elastic and creep strains as a function of creep time.   It is 
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clear that the elastic strain shows a behavior to that of the matrix stress.   While the elastic 

strain drops due to continued stress relaxation, the creep strain increases as expected. 

Further, there is no plastic strain induced, the matrix stress decreases continuously.   Since 

temperature is a constant, no thermal is induced either. 

The individual creep contributions are depicted in Figures 13 through 15.   Figure 

13 shows that dislocation creep is the predominant deformation mechanism during the 

early part of the creep.   Later (after about 40 seconds), The matrix stress is significantly 

lower than the starting value, diftusional creep becomes the predominant deformation 

mechanism, and remains so thereafter.   This is because the matrix stress is too low to 

cause a significant strain rate via dislocation creep. 

Figure 14 shows the contribution of the Power Law Breakdown (PLB) and Power 

Law (PL) mechanism to the overall dislocation creep strain. It is clear that at the relevant 

applied stress-temperature combination, PL creep is the dominant mechanism. Power law 

creep may be further subdivided into dislocation pipe diffusion controlled power law creep 

(Low Temperature Power Law or LTPL) and volume diffusion controlled power law 

creep (High Temperature Power Law or HTPL). These components are also shown in 

Figure 14.   It is evident that at 673 K, the contribution of HTPL dominates PL creep. 

Figure 15 shows the contributions of Coble and Nabarro-Herring components to 

the total diftusional creep strain at any instant during creep.   At the given temperature and 

stress loads, both mechanisms contribute comparably, with the Coble creep rate being 

somewhat higher. 
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All these trends are in quantitative agreement with the trends expected on the basis 

of steady state deformation maps.   Although the initial creep rate is very rapid (i.e., at 

very low times) appears to be rather too rapid.   It is therefore concluded that the model 

seems to be reasonable mechanistic prediction, it needs to be validated on the basis of 

extensive experimental work on a simple model system, where the predominant 

deformation mechanism may be discerned straightforwardly by electron microscopy 

following creeping to different times. 

Thus, it would seem that the model make reasonable prediction for this particular 

simulation.   Actual creep experiments are required to validate model. 
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VI.    SUMMARY 

1.        A one-dimensional analytical model for axial deformation of continuous fiber 

reinforced metal-matrix composites under both thermal cycling and isothermal 

creep, with or without externally applied stresses, has been developed.    The 

model assumes that the fiber is thermo-elastic and the matrix is thermo-elastic- 

plastic-creeping.    The model accounts for the following effects : 

a. Changing dislocation and diffusional matrix creep mechanisms via the use 

of unified creep laws.    This allows separation of the total matrix creep. 

into dislocation and diffusional creep components.    The dislocation creep 

strain may be further separated into power-law breakdown and power law 

creep, including high temperature power law creep (volume diffusion 

controlled) and low temperature power law creep (dislocation core 

diffusion controlled), whereas the diffusional creep strain may be split into 

the Coble and Nabarro-Herring creep components.    This allows the 

identification of the dominant creep mechanism at any instant during 

creep/thermal cycling, and is thought to enable the generation of transient 

deformation mechanism maps in the future. 

b. Time-dependent, diffusional sliding of the interface, following a diffusional 

flow law with a threshold stress, based on recent experimental studies of 

single-fiber composites.    The incorporation of such time-dependent 

interfacial sliding allows simulation of non-isostrain deformation of the 
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fiber and matrix near fiber-ends, where large shear stresses are usually 

present, and thus is able to explain the frequently observed strain 

incompatibility between the fiber and matrix, especially during thermal 

cycling experiments. 

c.        Finally, the model is strain-history sensitive, and therefore allows accrual of 

stresses and strains during a series of thermal and/or load excursions. 

Two versions of the model - one excluding interfacial sliding (isostrain model) and 

one including interfacial sliding (non-isostrain model) have been developed. 

Results from two sample calculations (one for constant rate heating without an 

applied stress and one for isothermal creep in the presence of a constant applied 

stress), based on the isostrain model are reported, showing the predominance of 

various creep mechanisms at different times/temperatures.   Because of its ability 

to calculate the matrix stress state and discern the predominant matrix creep 

mechanism at any instant during isothermal creep or thermal cycling, it is thought 

that this model will eventually allow the generation of transient deformation 

mechanism maps for axial straining of continuous fiber reinforced metal-matrix 

composites.    The results indicate that the regimes of dominance of the various 

creep mechanisms are qualitatively reasonable, suggesting that the model is 

phenomenologically correct. 
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It is recommended that experiments on a simple model system be conducted to 

validate the model in the near future. 
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APPENDIX A.     CONVERSION OF SHEAR STRAIN RATE-SHEAR 
STRESS EQUATIONS TO NORMAL STRAIN 
RATE-NORMAL STRESS FORMS 

A.1    DIFFUSIONAL CREEP 

From Frost and Ashby [Ref. 23], we have for the shear strain rate by diffusional 

creep: 

nff=—-j-Deff (A.1.1) 
Kid 

where    j ^ - shear strain rate for diffusion     D# = D0e~Q'kT 

<TS - shear stress [MPa] D0 - frequency factor [mV1] 
Q - atomic volume [m3] Q  - Activation energy for the 
k - Boltzman constant [JK"1] appropriate diffusion path [kJmol"1] 
d - grain size [m] T  - absolute temperature [K] 

The von Mises effective stress (<7m) and strain are related to the matrix shear stress and 

strain as follows: 

V3 (A. 1.2) 
y = Sa 

diff Substitution of Equations (A. 1.2) into Equation (A.1.1), and solving for £m   results in 

Equation (10) found in Section A Chapter IV: 

.diff       lAOjQ. ^diff £- -^tD" (10) 

A.2     DISLOCATION CREEP 

From Frost and Ashby [Ref. 23], the shear strain rate by dislocation creep for 

power-law creep and power-law breakdown is given as: 
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Yäisi = K 
GmbDeff 

kT 
sinh 

ra,   v 
—a 

\Gm    j 
(A.2.1) 

where ^ is a constant, ri is the stress exponent, and ym is the shear strain rate for 

U'    ^ dislocation.   For power-law creep, the hyperbolic sine term, sinh —as approaches 
Gm    J 

a' 
<7S in Equation (A.2.1) and becomes: 

y PL - ^2 

GmbDeff(a'    V 
 as 

\Gm    j kT 
(A.2.2) 

Substituting Equations (A. 1.2) in Equation (A.2.2), results in: 

7PL - -^2 
GhD^fa'cy, 

kT    lGmV3, 
(A.2.3) 

This is equivalent to the shear stress rate-equation for power-law: 

7 PL ~ ^2 
GJ>D« f 

kT ^Gm 

(A.2.4) 

Correlating like terms in Equation (A2.3) and Equation (A.2.4) gives the following: 

A'2a'   =A2 (A.2.5) 

n' = n (A.2.6) 

Equation (A2.4) is equivalently written in terms of tensile stress and strain rate and 

becomes: 

b=   4   GmbDeff <7„ 

J$        kT    KG, 
(A.2.7) 

where the equivalent constant A, for tensile stress and strain rate is represented as: 
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A2=(y5)"+lA (A.2.8) 

b 

f _ > 

.GJ 
Z> (A.2.9) 

Substituting Equations (A. 1.2), and Equations (A.2.7) through (A.2.9) into Equation 

.disl 
(A.2.1), and solving for sm   results in Equation (13) found in Section A Chapter IV: 

(14) 

.disl 
s„   = 

'&nl 

\a'J 
AGmb 
kT     eff sinh 

-ml 

(13) 

where D: 
disl 

1     3 
a f'     Y 

\b \GJ 
D„ 
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APPENDIX B.     MATLAB   COMPUTER CODE FOR ISOSTRAIN 
UNIFIED CREEP LAW 

% PROGRAM FOR CONT FIBER MMCS WITH RIGID INTERFACE (ISOSTRAIN) AND UNIFIED 
% LAW CREEP CAPABLE OF HANDLING A NON-ZERO APPLIED STRESS 

%% LAST REVISION DATE : 15 JANUARY 1997 

clear all 
format short e   % Sets floating point format with 5 digits. 

M= 10000;    .   % M=inputCEnter the number of steps, M:') 
PD= 100; % MAKE STEP SIZE (M) LARGER IF DIVISION BY ZERO ERROR OCCURS !!! 

% DIMENSIONALIZE ARRAY VARIABLES 

time=zeros( 1 ,M+4); 
temp=zeros(l,M+4); 
sigma_m=zeros(l,M+4); 
sigma_y=zeros( 1 ,M+4); 
sigma_y l=zeros( 1 ,M+4); 
d_sigma_m=zeros( 1 ,M+4); 
d_thstress=zeros(l,M+4); 
Deff=zeros(l,M+4); 
Dl=zeros(l,M+4); 
apDp=zeros(l,M+4); 
Em=zeros(l,M+4); 
Gm=zeros(l,M+4); 
Kl=zeros(l,M+4); 
c=zeros(l,M+4); 
creep_strain=zeros(l,M+4); 
total_str=zeros(l,M+4); 
total_elastic_str=zeros(l,M+4); 
total_plastic_str=zeros( 1 ,M+4); 
total_creep_str=zeros(l ,M+4); 
total_thermal_str=zeros(l,M+4); 
testl=zeros(l,M+4); 
test2=zeros(l,M+4); 
num=zeros(l,M+4); 
den=zeros(l,M+4); 
invrwh=zeros( 1 ,M+4); 
rwh=zeros(l,M+4); 

diff_crp_str=zeros( 1 ,M+4); 
NH_crp_str=zeros( 1 ,M+4); 
A_NH=zeros(l,M+4); 
Coble_crp_str=zeros( 1 ,M+4); 
A_Coble=zeros(l,M+4); 

disl_crp_str=zeros( 1 ,M+4); 
PLB_crp_str=zeros(l,M+4); 
PL_crp_str=zeros( 1 ,M+4); 
LT_PL_crp_str=zeros(l,M+4); 
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HT_PL_cip_str=zeros( 1 ,M+4); 
A_Disl_vol=zeros( 1 ,M+4); 
A_Disl_pipe=zeros( 1 ,M+4); 
L=zeros(l,M+4); 

total_disl_crp_str=zeros(l,M+4); 
total_diff_crp_str=zeros( 1 ,M+4); 

%%%%%%%%%%  ENTER INITIAL AND FINAL CONDITIONS   %%%%%%%%%% 

rate = -1/60; 
temp mit = 700; 
temp_final = 300; 

% rate=inputCEnter Cooling (-) / Heating (+) rate, rate [K/sec]:') 
% temp_init=input('Enter the initial temperature, temp_init [K]:') 
% temp_final=input('Enter the final temperature, temp_final [K]:') 

sigma_m_init   = -1.9059e6;       % sigma_m_init=inputCEnter the initial matrix stress state, 

total_str_init    = 1.5156e-3; 
appl_stress       = 0.00e6; 

% sigma_m_init [Pa]:') 
% sigma_m_init has to be smaller than sigmayl for isothermal creep 
% total_str_init=input('Enter the initial total strain, total_str:') 
% appl_stress=input('Enter the applied stress, appl_stress [Pa]:') 

%%%%%%% INPUT MATERIAL PROPERTIES FOR CALCULATIONS %%%%%%%%%%% 

T_melt = 933; 
alpha_m 
alpha f 
Ef 

= 23e-6; 
= 4e-6; 
= 450e9; 

Vf = 0.4; 
Emo = 65e9; 
Gmo = 25e9; 
T_Depend = -0.5; 

Klo = 5e9; 
n = 1.0; 
Dlo = 1.7e-4; 
Ql = 142000; 
delDgbo = 5e-14; 

Qgb = 84000; 

apDpo 
Qp 

= 7e-25; 
= 82000; 

b = 2.86e-10; 
Omega 
A 

= 1.66e-29; 
= 3.4e6; 

z = 4.4; 
alpha_prime = 1000; 

d = 25e-6; 
R = 8.314; 
K = 1.38e-23; 

% T_melt=CEnter the matrix Melting Temp., Tjmelt (K):') 
% alpha_m=('Enter tlie matrix CTE, alpha_m [1/K]:') 
% alpha_f=CEnter the fiber CTE, alpha_f [1/K]:') 
% Ef=input(*Enter Youngs Modulus for the fiber, Ef [Mpa]:') 
% Vf=input('Enter the volume fraction of the fiber, Vf [0.XX]:') 
% Emo=input('Enter Matrix Youngs Modulus at 300K, Emo [Mpa]:') 
% Gmo=input('Enter Matrix Shear modulus at 300K, Gmo [Mpa]:') 
% T_Depend=input('Enter Temp Dependence of Modulus, 
% (Tm/Go)(dG/dT), T_Depend:') 
% Klo=input('Enter work hardening constant, Klo [Mpa]:') 
% n=input('Enter the work hardening exponent, n:') 
% input('Enter the frequency factor for diffusivity), Do [mA2/s]:*) 
% input('Enter the Activation Energy for diffusion, Q [J/mole]:') 
% delDgbo=nput('Enter the Grain Boundary pre-exponential, delta * 
%Dgbo[mA3/s]:') 
% Qgb=input('Enter the Grain Boundary Activation Energy, Q 
% [J/mole]:') 
% apDp=nput('Enter the Pipe pre-exponential, ap * Dpo [mA4/s]:') 
% Qp=input('Enter the Pipe pre-exponentialActivation Energy, Q 
% [J/mole]:') 
% b=input('Enter the Burgers vector, b [m]:') 
% Omega=input('Enter the Atomic Volume, Omega [mA3]:') 
% A= input('Dorn Constant [str rate = 
% A*((sigma_m/G)Az)*Deff*G*b/(k*T)], L:') 
% z=input('Enter stress exponent for creep equation, z :') 
% alpha_prime=input('alpha_prime, the value of sigma/G for P-L 
% Breakdown, Frost+Ashby:') 
% d=input('Enter the matrix grain size, d [m]:') 
% Universal Gas constant [J/mole-K] 
% Boltzman constant [J/K] 

alpha=alpha_prime/sqrt(3); % alpha is in tension, alpha_prime in shear (Frost+Ashby) 
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%%%%% PROPERTIES OF 1100 AL 

PP=43.625; 
QQ=-0.009; 
RR=-6.75255e-5; 
MM=35.2082; 
NN=0.0377365; 

%%%%%%% TfflS SECTION CALCULATES THE MATRIX STRESS AFTER APPLYING AN 
%%%%%%% EXTERNAL STRESS AT T=temp_init 

% Calculate matrix stress and strain due to appl stress 

E_m=Emo*(l+((temp_init-300)/T_melt)*T_Depend); % Find Em at creep temp 
G_m=Gmo*(l+((temp_init-300)/T_melt)*T_Depend); % Find Gm at creep temp 
K_l=Klo*(l+((temp_init-300)/T_melt)*T_Depend); % Find Plastic Modulus at creep 

%temp 
E_c=E_m*(l-Vf)+Ef*Vf; % Composite modulus at creep 

% temp 

if appl_stress>0  % associate sign of yield strength with sign of appl_stress 
constant=l; 

else 
constant—1; 

end 

%%%%% Yield stress (Pa) of annealed 1100 Al at temp_init 

if(temp_Linit<=625) 
% Power 2 fit for low T region 
sigma_ys=(PP+QQ*temp_init+RR*temp_initA2)* le6; 

else 

end 

% Linear fit for Hi T region 
sigma_ys=(MM-NN*temp_init)* le6; 

if abs(sigma_m_init)>abs(sigma_ys) 
sigma_yield=constant*abs(sigma_m_init); 

else 
sigma_yield=constant*sigma_ys; 

end 

% SIX VARIOUS APPLICATIONS OF EXTERNAL LOAD TO PRODUCE SIGMA_M_o 

if sigma_m_imt*appl_stress>=0 % initial stress and appl stress have the same sense (sign) 
if abs(sigma_m_init)>=abs(sigma_yield) 

% CASE H : PLASTIC LOADING 
del_sigma_m_app=K_l*appl_stress/(Ef*Vf+K_l*(l-Vf)); 
eps=appl_stress/(Ef*Vf+K_l*(l-Vf)) + sigma_m_init/E_m; 
del_strain_app=eps-(sigma_m_init/E_m);   % total strain increment during loading 
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elast_strain=del_sigma_m_app/E_m; % elastic strain induced in matrix during 
% loading 

plast_strain=del_strain_app-elast_strain;     % plastic strain induced in matrix during 
% loading 

else 
ifabs(appl_stress)>=(abs(sigma_yield-sigma_m_init)/E_m)*E_c; 

% CASE I: ELASTO-PLÄSTIC LOADING 
eps=(appl_stress-((sigma_yield-sigma_m_init)/E_m)*E_c)/(Ef|tVf+K_l*... 

(l-Vf))+sigma_yield/E_m; 
del_sigma_m_app=(sigma_yieId-sigma_m_init)+K_l*(eps-sigma_yield/E_m); 
del_strain_app=eps-(sigma_m_init/E_m); 
elast_strain=del_sigma_m_app/E_m; % elastic strain induced in matrix 

% during loading 
plast_strain=del_strain_app-elast_strain;     % plastic strain induced in matrix 

o, 

else 
% during loading 

% CASE VI: ELASTIC LOADING 
del_sigma_m_app=E_m*appl_stress/E_c; 
eps=(appl_stress/E_c)+(sigma_m_init/E_m); 
del_strain_app=eps-(sigma_m_init/E_m); 
elast_strain=del_sigma_m_app/E_m; % elastic strain induced in matrix 

% during loading 
plast_strain=0; % plastic strain induced in matrix 

% during loading 

end 
end 

else       % initial stress and appl stress have opposite signs 
ifabs(appl_stress)>=(abs(sigma_yield-sigma_m_init)/E_m)*E_c 

% CASE HI: ELASTIC UNLOADING + ELASTIC-PLASTIC LOADING 
eps=(appl_stress-((sigma_yield-sigma_m_init)/E_m)*E_c)/(Ef*Vf+K_l*... 

(l-Vf))+sigma_yield/E_m; 
del_sigma_m_app=(sigma_yield-sigma_m_init)+K_l*(eps-sigina_yield/E_m); 
del_sttain_app=eps-(sigma_m_init/E_m); 
elast_strain=del_sigma_m_app/E_m; % elastic strain induced in matrix 

% during loading 
plast_strain=del_strain_app-elast_strain; % plastic strain induced in matrix 

% during loading 
else 

if abs(appl_stress)<=(abs(sigma_m_init))*E_c/E_m 
% CASE V: ELASTIC UNLOADING ONLY 
del_sigma_m_app=appl_stress*E_m/E_c; 
eps=(appl_stress/E_c)+(sigma_m_init/E_m); 
del_strain_app=eps-(sigma_m_init/E_m); 
elast_strain=del_sigma_m_app/E_m; % elastic strain induced in matrix 

% during loading 
plast_strain=0; % plastic strain induced in matrix 

else 
% during loading 

% CASE IV: EASTIC UNLOADING + ELASTIC LOADING 
del_sigma_m_app=appl_stress*E_m/E_c; 
eps=(appl_stress/E_c)+(sigma_m_init/E_m); 
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del_strain_app=eps-(sigma_m_init/E_m); 
elast_strain=del_sigma_m_app/E_m; % elastic strain induced in matrix 

% during loading 
plast_strain=0; % plastic strain induced in matrix during loading 

end 
end 

end 

sigma_m_total=sigma_m_init+del_sigma_m_app;   % matrix stress = initial residual stress + applied 
% increment 

strain_total=total_str_init+del_strain_app; % matrix strain = starting strain + strain due to appl 
% stress 

%% END OF THE SIX CASES OF APPLIED LOADS 

%%%%% The following input stints are to generalize the prgm for both th cycling and isothermal creep 

if temp_init==temp_final 
time_init=2; % input('Enter the start time, time_init [s]:   '); 
time_final=input(Enter the finish time, time_final [s]:   '); 
time_interval=time_final-time_init; 

else 

end 

time_interval=(temp_final-temp_init)/rate; 
time_init=0; 

% Set up initial array values 

time(2)=0; % time prior to appln of ext stress 
time(3)= 1; % time corresponding to appln of external stress 
time(4)=time_init; % time at start of creep or thermal cycling 
temp(2)=temp_init; % temp at time(2) 
temp(3)=temp(2); % temp at time(3) 
temp(4)=temp(3); % start temperature for thermal cycling 

total_str(2)=total_str_init; % initial strain before applying external stress,ie., at time(2) 
total_str(3)=strain_total; % matrix strain after applying ext stress 
total_str(4)=total_str(3); % matrix strain just prior to start of creep or thermal cycling 

total_elastic_str(4)=elast_strain;  % elastic strain just after applying external stress 
total_plastic_str(4)=plast_strain; % plastic strain just after applying external stress 

sigma_m(2)=sigma_m_init; % matrix stress prior to appln of external stress. 
sigma_m(3)=sigma_m_total; % matrix stress after applying ext stress 
sigma_m(4)=sigma_m(3); % matrix stress just prior to start of creep or thermal cycling 

%%%%%%%%%% START OF CALCULATIONS   %%%%%%%%%% 

% set time and temp steps 

timeStep=time_interval/M; % Calculation of time step. 
tempStep=timeStep*rate; % Calculation of temperature steps. 
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d_alpha=alpha_m-alpha_f; % Difference between matrix and Fiber CTE 

%%%%%%%%%%%%% BEGIN ITERATIONS %%%%%%%%%%%%%%%%%% 

for i=5:M+4 % Set counter from 5 to the # of steps plus 4 (M+4) 

temp(i)=temp(i-l)+tempStep;        % New temperature at ith step 
time(i)=time(i-l)+timeStep; % New time at ith step 

Em(i)=Emo*(l+((temp(i)-300)/T_melt)*T_Depend); % Find Temperature Dependent Em 
Gm(i)=Gmo*(l+((temp(i)-300)/T_melt)*T_Depend); % Find Temperature Dependent Gm 
Kl(i)=Klo*(l+((temp(i)-300)/T_melt)*T_Depend);    % Find Temperature Dependent Plastic 

% Modulus 

Dl(i)    = Dlo*exp(-Ql/(R*temp(i))); % Lattice diffusivity 
apDp(i)  = apDpo*exp(-Qp/(R*temp(i)));       % Pipe diflusivity * area fraction of disln pipe 
Deff(i)    =Dl(i)+(10/3)*apDp(i)*(l/bA2)*(abs(sigma_m(i-l))/Gm(i))A2; 

% Effective Diffusivity for Disl creep 
delDgb(i) = delDgbo*exp(-Qgb/(R*temp(i)));   % Grain Boundary diffusivity*Grain Bdy width 

% Yield stress (Pa) of annealed 1100 Al (T<=625K from Metals Handbook, T>625K assumed) 

if(temp(i)<=625) 
% Power 2 fit for low T region 

sigma_yl(i)=(PP+QQ*temp(i)+RR*temp(i)A2)* le6; 
else 

% Linear fit for Hi T region 
sigma_yl(i)=(MM-NN*temp(i))* le6; 

end 

%%%%%%%%%% Calculate Various Creep Constants %%%%%%%%%% 

L(i)=A*((Gm(i)*b)/(K*temp(i)))/(alphaAz); % Pre - Sinh coeff for tension in Frost+Ashby's eqn 

% Nabarro-Herring creep rate = A_NH*sigmam 
A_NH(i)=14*Omega*Dl(i)/(K*temp(i)*dA2); 

% Coble creep rate = A_Coble*sigmam 
A_Coble(i)=14*Omega*(3.14/d)*delDgb(i)/(K*temp(i)*dA2); 

% const for lattice diff contribution in Garofalo's sinh law 
A_Disl_vol(i)=L(i)*Dl(i); 

% const for pipe diff contr. in Sinh law 
A_Disl_pipe(i)=L(i)*(10/3)*apDp(i)*(^A2)*(abs(sigma_m(i-l))/Gm(i))A2; 

% CALCULATE UPDATED YIELD STRENGTH 

if (sigma_m(i-l) < 0) % for compressive matrix stress 
if (abs(sigma_m(4)) > abs(sigma_yl(5))) 

sigma_y(i)=-sigma_jrl(i)-(abs(sigma_m(2))-abs(sigma_yl(3))); 
else 

sigma_y(i)=-sigma_y 1 (i); 
end 

c(i)=-l; 
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else % for tensile matrix stress 
if (abs(sigma_m(4)) > abs(sigma_yl(5))) 

sigma_j(i)=sigma_yl(i)+(abs(sigma_m(2))-abs(sigma_yl(3))); 
else 

sigma_y(i)=sigma_yl(i); 
end 

c(i)=l; 
end 

%%%%%%%%%% FIND rwh AND invrwh %%%%%%%%%%% 

testl(i)=abs(sigma_m(i-l))-abs(sigma_y(i)); 
test2(i)=abs(sigma_m(i-2))-abs(sigma_y(i)); 
DUMMY2(i)=sigma_m(i-l); 

if(testl(i)<=0) 
invrwh(i)=0; 
DUMMY(i) = 5; 

else 
if(test2(i)<=0) 

rwh(i)=Kl(i)*n*((abs(sigma_m(i-l)-sigma_y(i)))/Kl(i))A((n-l)/n); 
%if (rwh(i)<=le5) % when (sigma_m(i-l> 
% sigma_y(i)) is too large, rvvh becomes too small 
% invrwh(i)=0; 
% therefore, make inrwh=0 rather than letting it go to infinity 
%else 

if (sigma_m(i-l)< 0) 
invrwh(i)=-l/rwh(i); 

else 
invrvvh(i)= l/rwh(i); 

end 
%end 

else 

DUMMY(i) = 10; 

if ((sigma_m(i-l)==sigma_m(i-2)) | (abs(sigma_m(i-l)) < abs(sigma_m(i-2)))) 
invrwh(i)=0; 
DUMMY(i)=20; 

else 

0 

rwh(i)=Kl(i)*n*((abs(sigma_m(i-l)-sigma_m(i-2)))/Kl(i))A((n-l)/n); 
%if(rwh(i)<=le5) 
% when (sigma_m(i-l)-sigma_m(i-2)) is too large, rwh becomes too 
% small 
% invrwh(i)=0; 
% therefore, make inrwh=0 rather than letting it go to infinity 

%else 
if (sigma_m(i-l)< 0) 

invrwh(i)=-l/rwh(i); 
else 

invrwh(i)= l/rwh(i); 
end 

%end 
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DUMMY(i)=30; 
end 

end 
end 

%%%%%%%%%% Find Differential Thermal & Matrix Creep Strains  %%%%%%%%%% 

delJh_strain=d_alpha*ternpStep; 

NH_crp_str(i)=c(i)*A_NH(i)*abs(sigma_m(i-l))*timeStep; 
Coble_crp_str(i)=c(i)*A_Coble(i)*abs(sigma^m(i-l))*timeStep; 

diff_crp_str(i)=NH_crp_str(i)+Coble_crp_str(i); 

%% The following eqns for disln creep are based on Frost+Ashby's Sinh Law 

(iisl_crp_str(i)=c(i)*(A_Disl_vol(i)+A_Disljpirje(i))*((sinli(alpha*abs(sigma_m(i-l)/Gm(i))))Az) 
timeStep; 

PL_crp_str(i)=c(i)*(A_Disl_vol(i)+A_Disljipe(i))*((alpha*abs(sigma_m(i-l)/Gm(i)))Az)*timeStep; 
LT_PL_crp_str(i)=c(i)*A_Disl_pipe(i)*((alpha*abs(sigma_m(i-l)/Gm(i)))Az)*timeStep; 
HT_PL_crp_str(i)=c(i)*A_Disl_vol(i)*((alpha*abs(sigma_m(i-l)/Gm(i)))Az)*timeStep; 
PLB_crp_str(i)=disl_crp_str(i)-PL_crp_str(i); 

creep_strain(i)=diff_crp_str(i)+disl_crp_str(i); 

%%%%%%%%%% Find Stress Increments %%%%%%%%%% 

num(i)=del_th_strain+creep_strain(i); 
den(i)=(l/Em(i))+(l-Vf)/(Ef*Vf)+invrwh(i); 
d_sigma_m(i)=-num(i)/den(i); 

%%%%%%%%%% Find Matrix Stress %%%%%%%%%% 

sigma_m(i)=sigma_m(i-l)+d_sigma_m(i); 

%%%%%%%%%% Find Matrix Plastic, Elastic & Thermal Strains  %%%%%%%%%% 

if (sigma_m(i-l) < 0) 
if (d_sigma_m(i) < 0) 

plastic_str(i)=-d_sigma_m(i)*invrwh(i); 
else 

plastic_str(i)=d_sigma_m(i)*invrwh(i); 
end 

else 

end 
plastic_str(i)=d_sigma_m(i)*invrwh(i); 

elastic_str(i)=d_sigma_m(i)*(l/Em(i)); 
thermal_str(i)=alpha_m*tempStep; 
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%%%%%%%%%% Find Total Matrix Strain  %%%%%%%%%% 

d_strain(i)=elastic_str(i)+plastic_str(i)+creep_strain(i)+thermal_str(i); 

total_str(i)=total_str(i-l)+d_strain(i); 
total_elastic_str(i)=total_elastic_str(i-l)+elastic_str(i); 
totaljplastic_str(i)=total_plastic_str(i-l)+plastic_str(i); 
total_creep_str(i)=total_creep_str(i-l)+creep_strain(i); 
total_thermal_str(i)=total_thential_str(i-l)+tliermal_str(i); 

total_diflf_crp_str(i)^otal_diflf_crp_str(i-l)+diff_crp_str(i); 
total_disl_crp_str(i)=total_disl_crp_str(i-l)+disl_crp_str(i); 

end 

%%%%%%%%%   PRINT TO A FILE AND PLOT OUTPUTS %%%%%%%%%%%%%%%% 

if temp_init == tempfinal 

%i=4:M+4;        % Start counter from 2 to include instantaneous strain in total_str vs time plot 
i=linspace(4,M+4,PD); 

figure 
plot(time(i)5total_str(i),'o') 
title(Total Strain Vs Time") 
xlabel('TIME [seconds}') 
ylabel('TOTAL STRAIN') 

figure 
plotCtimeCiJ.sigma^CiJ.'o'.timeCiJ^igmajnCi),'*') 
xlabel(TIME [seconds]') 
ylabelCMATRTX STRESS [Pa]') 
title('Matrix Stress = *,  Yield Strength = o') 

figure 
plot(time(i),total_elastic_str(i),'+'Jtime(i),total_creep_str(i),*d') 
xlabel('TIME [seconds]') 
ylabelCCUMUL. MATRIX STRAIN COMPONENTS') 
title('elastic=+, creep=diamond') 
%title('elastic=+, plastic=o, thermal=*, creep=diamond') 

figure 
plot(time(i),diff_crp_str(i),'+,

5time(i),disl_crp_str(i),,o') 
xlabel('TIME [seconds]') 
ylabelCINCREMENTAL CREEP STRAINS') 
titleCDiffusional Creep Strain = +, Dislocation Creep Strain = o') 

figure 

plot(time(i),disl_crp_str(i)Xtime(i)X^^ 
trW.'d') 
xlabel('TIME [seconds]') 
ylabelCIND. DISLOCATION CREEP STRAINS') 
title(Total Disl Crp=o, LT Power Law=+, HT Power Law=*, PL Breakdown=diamond') 
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figure 
plot(time(i),diflf_crp_str(i),,o,

Jtime(i),NH_crp_str(i)>'+
,,time(i),Coble_crp_str(i),'*') 

xlabel(TIME [seconds]') 
ylabel(TND. DIFFUSIONAL CREEP STRAINS') 
title(Total Diff Crp = o,  Nabarro-Herring Creep = +,   Coble Creep = *') 

%%%%%% PRINT sigma_m AND total_str FOR i=M+4 IN WINDOW  %%%%%% 

figure 
orient tall 

plot(Q,[]),axis('ofr); 
text(0.05,1.00,sprintf('ISOTHERMAL CREEP, ISO-STRAIN, UNIFIED CRP. LAW)); 
text(0.05,0.95,sprintf('CREEP TEMP [K] = %6.4f ,temp_init)); 
text(0.05,0.90,sprintf('APPLIED STRESS [Pa]= %6.4e',appl_stress)); 

text(0.10,0.80,sprintf(,MATRIX STRESS [Pa] BEFORE APPL STRESS : %6.4e',sigma_m(2))); 
text(0.10,0.75,sprintfCMATRIX STRESS [Pa] AFTER APPL STRESS : %6.4e',sigma_m(4))); 

text(0.10,0.65,sprintf(TOTAL MATRIX STRAIN BEFORE APPL STRESS: %6.4e\total_str(2))); 
text(0.10,0.60,sprintf(TOTAL MATRIX STRAIN AFTER APPL STRESS: %6.4e',total_str(4))); 

text(0.15,0.55,sprintfCELASTIC STRAIN DUE TO APPLIED STRESS:   %6.4e', elast_strain)); 
text(0.15,0.50,sprintf('PLASTIC STRAIN DUE TO APPLIED STRESS:   %6.4e', plast_strain)); 

text(0.10,0.40,sprintf('FINAL MATRLX STRESS [Pa]: %6.4e', sigma_m(M+4))); 
text(0.10,0.35,sprintf('TOTAL MATRIX STRAIN:   %6.4e', total_str(M+4))); 

text(0.10,0.25,sprintf('ELASTIC STRAIN ACCUM. DURING CREEP:   %6.4e', total_elastic_str(M+4))); 
text(0.10,0.20,sprintf('TOTAL ISOTHERMAL CREEP STRAIN:   %6.4e', total_creep_str(M+4))); 

text(0.10,0.10,sprintf('TOTAL DISL CREEP STRAIN:   %6.4e', total_disl_crp_str(M+4))); 
text(0.10,0.05,sprintf('TOTAL DIFF CREEP STRAIN:   %6.4e', total_diff_crp_str(M+4))); 

%%%%% DATA OUPUT FTLE IS WRITTEN FOR EACH RUN 
%%%%% NAME OF DATA FILE MUST DIFER FOR EACH RUN 
%%%%% I.E., Heat from 300 to 700 K, name file: u3_2_7.txt 
%%%%% I.E., Creep run at 673 K with 40 MPa applied load, name file: u673_40.txt, etc. 

yy=[temp(i);time(i);sigma_y(i);sigma_m(i);total_str(i);... 
total_thermal_str(i);total_elastic_str(i);total_plastic_str(i);total_creep_str(i);... 
disl_crp_str(i);diff_crp_str(i);PLB_crp_str(i);PL_crp_str(i);... 
LT_PL_crp_str(i);HT_PL_crp_str(i);Coble_crp_str(i);NH_crp_str(i)]; 

rp^openCWJJ.txt'/w'); 
rowtext=[' temp    time      sigma_y     sigma_m     tot_str     tot_tlistr   tot_elstr   tot_plstr   tot_crstr 
disl_str    diff_str    PLB_crpstr PL_crpstr   LT_PLstr    HT_PLstr    Coble_str   NH_str     ']; 
fprintf(rp,' temp    time      sigma_y     sigma_m     tot_str     tot_tlistr   tot_elstr   tot_plstr   tot_crstr 
disl_str    diff_str    PLB_crpstr PL_crpstr   LTJPLstr    HT_PLstr    Coble_str   NH_str 
\n',rowtext) 
rprintf(rp, '%8.2f %10.2f %12.4e %12.4e %12.4e %12.4e %12.4e %12.4e %12.4e %12.4e %12.4e %12.4e 
%12.4e %12.4e %12.4e %12.4e %12.4e\n', yy) 

else 
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i=linspace(4,M+4,PD); 

figure 
plot(temp(i),total_str(i),'o') 
title(Total Strain Vs Temperature') 
xlabeK'TEMPERATURE [K]') 
ylabel(TOTAL STRAIN') 

figure 
plot(temp(i),sigma_y(i),'o',temp(i),sigma_m(i),'*') 
xlabel(TEMPERATURE [K]') 
ylabelCMATRTX STRESS [Pa]') 
title('Matrix Stress = *,  Yield Strength = o') 

figure 
plot(temp(i),total_elastic_str(i),'+',temp(i),tota^ 
al_creep_str(i),'d') 
xlabel(TEMPERATURE [K]') 
ylabelCCUMUL. MATRIX STRAIN COMPONENTS') 
title('elastic=+, plastic=o, thermal=*, creep=diamond') 

figure 
plot(temp(i),dirr_crp_str(i),'+',temp(i),disl_crp_str(i),'o') 
xlabeK'TEMPERATURE [K]') 
ylabelCINDIVIDUAL CREEP STRAINS') 
title('Difrusional Creep Strain = +, Dislocation Creep Strain = o') 

figure 
plot(temp(i),disl_crp_str(i)/o',temp(i),LT_^ 
_str(i),'d') 
xlabelCTEMPERATURE [K]') 
ylabel('IND. DISLOCATION CREEP STRAINS') 
title('Total Disl Crp=o, LT Power Law=+, HT Power Law=*, PL Breakdown=diamond') 

figure 
plot(temp(i)4iff_crp_str(i);o',temp(i),NH_cip_str(i)/+',temp(i),Coble_crp_str(i),'*') 
xlabeK'TEMPERATURE [K]') 
ylabeK'IND. DIFFUSIONAL CREEP STRAINS') 
title(Total Diff Crp = o,  Nabarro-Herring Creep = +,   Coble Creep = *') 

%%%%%%%% PRINT sigma_m AND total_str FOR i=M+4 IN WINDOW 

figure 
orient tall 
plot(D,G),axis('orr); 
text(0.05,1.00,sprintf(THERMAL CYCLING, ISO-STRAIN, UNIFIED CREEP')); 
texKO.OS.O^S.sprintfCINITIAL TEMP = %6.4f ,temp_init)); 
text(0.05,0.90,sprintf('FINAL TEMP = %6.4f ,temp_final)); 
text(0.10,0.85,sprintf('INTnAL MATRIX STRESS [Pa]: %6.4e',sigma_m_init)); 
text(0.10,0.80,sprintf('INITIAL TOTAL MATRIX STRAIN: %6.4e',total_str(4))); 
text(0.10,0.75,sprintf('INITIAL MATRIX ELASTIC STRAIN: %6.4e',total_elastic_str(4))); 
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text(0.10,0.705sprintf('INITIAL MATRIX PLASTIC STRAIN: %6.4e',total_plastic_str(4))); 
text(0.10,0.65,sprintf(TNrriAL MATRIX THERMAL STRAIN: %6.4e',total_tiiermal_str(4))); 
text(0.10,0.60,sprintf(TNITIAL MATRIX CREEP STRAIN: %6.4e',total_creep_str(4))); 

text(0.10,0.50,sprintf('FTNAL MATRIX STRESS [Pa]: %6.4e', sigma_m(M+4))); 
text(0.10,0.45,sprintf(TOTAL MATRIX STRAIN:   %6.4e', total_str(M+4))); 

text(0.10,0.35,sprintf('TOTAL ELASTIC STRAIN:   VdSAe', total_elastic_str(M+4))); 
text(0.10,0.30,sprintf(TOTAL PLASTIC STRAIN:   %6.4e', total_plastic_str(M+4))); 
text(0.10,0.25,sprintfCTOTAL THERMAL STRAIN:   %6.4e', total_thermal_str(M+4))); 
text(0.10,0.20,sprintf(TOTAL CREEP STRAIN:   %6.4e', total_creep_str(M+4))); 

text(0.10,0.15,sprintf('TOTAL DISL CREEP STRAIN:   %6.4e', total_disl_crp_str(M+4))); 
text(0.10,0.10,sprintf('TOTAL DffF CREEP STRAIN:   %6.4e', total_diflF_crp_str(M+4))); 

%%%%% DATA OUPUT FILE IS WRITTEN FOR EACH RUN 
%%%%% NAME OF DATA FILE MUST DIFER FOR EACH RUN 
%%%%% I.E., Heat from 300 to 700 K, name file: u3_2_7.txt 
%%%%% I.E., Creep run at 673 K with 40 MPa applied load, name file: u673_40.txt, etc. 

yy=[temp(i);time(i);sigma_y(i);sigma_m(i);total_str(i);... 
total_thermal_str(i);total_elastic_str(i);total_plastic_str(i);total_creep_str(i);... 
disl_crp_str(i);diflf_crp_str(i);PLB_crp_str(i);PL_crp_str(i);... 
LT_PL_crp_str(i);HT_PL_crp_str(i);Coble_crp_str(i);NH_crp_str(i)]; 

rp=fopen('u7_2_3 .txt'.V); 
rowtext=[' temp    time      sigma_y     sigma_m     tot_str     tot_tlistr   tot_elstr   tot_plstr   tot_crstr 
disl_str    diff_str    PLB_crpstr PL_crpstr   LT_PLstr    HT_PLstr    Coble_str   NH_str     ']; 
fprintf(fp,' temp    time      sigma_y     sigmajn     tot_str     tot_tlistr   tot_elstr   tot_plstr   tot_crstr 
disl_str    di£F_str    PLB_crpstr PL_crpstr   LT_PLstr    HT_PLstr    Coble_str   NH_str 
\n',rowtext) 
fprintf(fp, '%8.2f %10.2f %12.4e %12.4e %12.4e %12.4e %12.4e %12.4e %12.4e %12.4e %12.4e %12.4e 
%12.4e %12.4e %12.4e %12.4e %12.4e\n', yy) 

end 
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APPENDIX C.     DETERMINATION OF THE INTERFACIAL 
SHEAR STRESS n 

In order to determine vt, it is assumed that the matrix undergoes elastic, plastic, 

and creep deformation.  For the sake of mathematical expediency, it is further assumed 

that the matrix creeps by diffiisional and power law creep dislocation creep: 

ys 

y   = J- + LJE^ + A'T"
1
 +A»T (c.l) 

rn 

ys 
T T — T 

where — is the elastic term, -^ is the plastic term, y is the shear strain, x is the 
m 

interfacial shear stress, rj is the shear yield strength of the matrix, A' r"2 is the dislocation 

power-law creep term, n^ is the power-law exponent, A' and A" are the dislocation 

power-law creep and diffusional (Coble and Nabarro-Herring) creep terms, respectively. 

dv 
Since ym = —, Equation (C. 1) can be written as: 

dr 

dv      ( I       1       J — = r — + — + A" 
dr      {Gm    K"       ) 

ys 

^ + A'T" (C.2) 
K" 

Referring to Figure 2 in Section B Chapter IV, consider the displacement along the z- 

direction at an arbitrary point (r = r) in the matrix, w(r = rj) = u, and w(r = D/2) = v.   The 

force equilibrium at r = /y, and arbitrary point (r = r), provides, 

f 

Substitution of Equation (C.3) into Equation (C.l) becomes: 

Tf I (C.3) 
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dr 
= T± 

r l     l ■\ 

—+—+A" 
£m    K"       j 

f      r\"       ~ys 

+ A' 
V    r J 

m 

K" 
(C.4) 

Integrating from r = ly to R, compared to which v = (u+w) and v respectively, Equation 

(C.4) becomes: 

v - (a + w) = tj 
1        1 
 + — + A" 
Gm    K" 

vfu 
(  \ 

R 

Vf) 

n n 
+ A'r.r. 

» / 

1-/7 1-/7 
R      -r, 

1-« 

ys 

(C.5) 

Taking the first derivative of Equation (C.5) with respect to z gives: 

<jv__du   dw     dTj 

dz     dz    dz       dz 

1        1 
 + + A" 
Gm     K" 

/y In 
f    \ 

R 

Vf) 

n -1 dr.   n 
+ A'nr        —7~r, 

i        dz  f 

'   1-/7      \-n 
R      ~rf -0    (C.6) 

dv du dw      dy 
Smce — = em, — = sf, and w = hyi => therefore — = A-^. 

dz dz dz        dz 

This time, taking the first derivative of Equation (18) with respect to z, results in => 

dv dv 
—LJ- = K—'-At, Equation (C.6) becomes 
dz dz 

dr.      dr. 

m       j dz        dz 

1        1 
 + + A" 
Gm    K" 

VfH 
f   \ 

R 

Vf) 

„-\dr    „_! 
+ A'nr.      —r-r. 

i        dz  f 

1-/7      1-/7 R       ~7 
l-n 

(C.7) 

and when rearranged: 

dr. 

m      f        dz 
hA + 

r V    (   \ 
J_+J_+i4»r taA 
G        K" f      r. 

^   m J        \ f 

+ nA'r 
R        -rf 

f 1-/7 

V J 

n-\ 

(C.8) 
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For simplicity, let: 

A = KAt 

A' = AdislAt 

A" = AdiffAt 

-a, 
/RT , M = hKe  ""At 

f 
N = + — + AMT At IrAn 

V 
G„    K" 

T-dtf"-» 'f 

W 

Q = nr"fAdislAt 
rR*-»_f\ 
v    l~n    j 

■ 42Qfn     n8 n^ 

Am={^Y ADeff 
Gh r O" 
kT G. wmy 

Equation (C.9) simply becomes: 

dz. r 
M + N +Oz 

n-\ (C.9a) 

If one assumes, ^-is function of z, and from the second derivative of the force balance 

2 daf 
equation (tt = J~), Equation (C.9a) becomes: 

rf  dz 

s   - 
af        rf d\f 

m    E. 2     J 2 
/ dz 

M + N + Oz 
7J-1 (C.9b) 

or: 
d o\ 

dz' 
= H\ 

E< 
-£. (C.9c) 

where: HI 
rfl 

M + N + OT 
n-\ 
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and T{    is the interfacial shear stress from the previous step (iteration).   Equation (C.9c) 

is a second order differential equation that has a solution of the following form: 

07 = Efsm + Q cosh(/?z) + C2 sinh(ySz) (C. 10) 

\H\ 
where: ß = J—, and applying the following boundary conditions for Equation (CIO): 

do A z = 
of\z = ^\ = 0 and — = 0 

Ci and C2 becomes: 

C] = 

cosh ß- 

C2 = 

^msinh[/?^] 

cosh(^) 

Taking the derivative of Equation (CIO) with respect to z, the equation becomes: 

-^- = Qßsmh(ßz) + C2ßcosh(ßz) (CM) 
dz 

The interfacial shear stress n can now be determined by the substitution of Equation 

(C. 11) in the force balance equation which results in: 

T. = -—\Cxßsm\v(ßz) + C2ßcosh(ßzj\ (C. 12) 
rf 

where Q, C2 and ß have all been defined earlier. 
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APPENDIX D. RELATIONSHIP BETWEEN THE LINEAR WORK 
HARDENING COEFFICIENTS IN SHEAR, K" AND 
TENSION,^ 

As determined from Figure D.l, the stress at any point of the plot is: 

w K\\fm-Sm) (D.l) 

Substitution of the von Mises criterion, r = —j= and y - V3s in Equation D.l, 
V3 

hi„      ys+       A, 

3     m       3 f(r_r:) (D.2) 

Young's Modulus, Em is a function of the Shear Modulus, 

Gm=>G  = 
2(1 +v) 

(D.3) 

where vis Poisson's ratio.   Substitute Equation (D.3) in Equation (D.2) 

=>  * =        3     mrZ + y(r " rt) ™d compare to =>    r = Gm^ + £"(/ - r^) • 

Assuming mathematical license, v= 0.5, thus 2(l+v) = 3 , then 

3 
(DA) 
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APPENDIX E.     TEMPERATURE DEPENDENCE OF 
THRESHOLD STRESS, T„ 

The interfacial shear strain rate obtained from Reference 40 may be represented as: 

(E.l) r-——-[zi+z0\ 
kin 

where r„ is given by: (E.2) 

and <7Ä, the radial (normal) stress is a function of temperature acting on r„.   The radial 

stress, ofo is assumed a linear.function of temperature, of the form: 

ap =— + C (E.3) 

where A and C are arbitrary constants. Application of the two initial conditions for 

Equation (E.3), (1) is at the stress free conditions at composite fabrication, and (2) is at 

room temperature, 

aR(T=S00K) = 0 crR(T=300K) = cj„ 

where <TRO is not to exceed the matrix yield strength, the constants A and C are determined 

tobe: 

A = 480crE C = -0.60o-B 

Substitution of the constants/I and B into Equation (E.3), Equation (E.3) becomes: 

480o-t 
°R=- ■-0.60er c 

The final form of Equation (E.2) for r0 is: 

T=2 
480 

-0.60 (E.4) 
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